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Effective classical partition functions with an improved time-dependent reference potential
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The original Feynman-Kleinert [Phys. Rev. A 34, 5080 (1986)] variational approach to Euclidean path
integrals is improved by introducing a reference harmonic potential whose center is allowed to change with
time. The motion of the center of the potential is varied such that the “effective potential” of Feynman and
Kleinert is minimized and leads to an equation of motion for the classical path in the reference system that
closely reproduces the “exact” average path. The formalism is applied to the double-well potential V(x)
=—x?/2+gx*/4+1/4g. This modification improves the accuracy of the approximate quantum-mechanical dis-

tribution function and, to a larger extent, the density matrix.
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I. INTRODUCTION AND THEORY

A remarkably accurate variational treatment of Euclidean
path integrals was first proposed by Feynman and Kleinert
some years ago [1] and the accuracy of the method was
investigated in detail in Ref. [2]. Kleinert [3] extended the
basic approach to obtain a uniformly convergent variational
perturbation theory, and the method has been applied, in its
original or modified form, to quantum crystal lattices [4], to
calculate excited state energies [5], density matrices [6], and
much more. In this paper, we suggest a modification to the
first-order, original, Feynman-Kleinert method and show that
it improves the calculation of the partition function and the
density matrix for a particle in a one-dimensional double-
well potential.

The quantum-mechanical partition function Z for a gen-
eral potential V(x), expressed as a path integral [7], is

Z= f Dlx(7)]e™

B
=fD[x(7')]exp<—f dr[%x(f)2+v(x(7'))]>,
0
(1.1)

where B=1/T, A is the Euclidean action, and the mass and
Planck’s (%) and Boltzmann’s constants have been set to
unity. To make a connection with classical statistical me-
chanics, the partition function can be written as

278
where W,4(x,) is called an “effective classical potential.”
Clearly, W,4/(x;) can be obtained from
e BWefrxo) , (13)
\’% S '

(1.2)

where
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z,= J Dlx(7)]8(x - xp)e ™™, (1.4)
and where X is some functional of the path variable x(7).

In the original Feynman-Kleinert paper [1], a variational
approach was used to approximate W,/(x), based on a har-
monic reference problem with an analytic solution. Their ref-
erence Euclidean action was

B ()2 2

A zf df(ﬂ+m[x(r)-x0]2>, (1.5)
0 2 2

where the oscillator frequency depends on x,. They also

chose x= lﬂ f gdrx(r), such that the harmonic oscillator is

centered around the time average of each individual path.
The partition function was then rewritten as

Z= f dx f Dlx(7)]8(x - xo)e_AXoe‘(A‘AxU)

= f dxofxgke-(’*-’*x&)xo, (1.6)
where
(F(x(7))y, = % J Dx(7)]8(¥ - xp)e AoF (x(7))
(1.7)

is a restricted average relative to the reference problem and
Zi(:)) is defined by Eq. (1.4) with A replaced by A, . Using the
Gibbs-Bogoliubov-Jensen-Peierls inequality

(e"A- AXO)>X° = ¢ A Ay, (1.8)

the final approximation for the effective potential is obtained
from the bound

k wz(XO) 2
BW,dx0) = f dr\ V(x(7) - [x(7) = xo]
0

2

X0
1
~lnz - 5 n@7p). (1.9)

This bound is then minimized with respect to w?(x,) to give
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a better estimate of W,/(x,). Note that Eqs. (1.6) and (1.8)
are essentially the starting point of Zwanzig’s classical sta-
tistical mechanical perturbation theory [8] and that varia-
tional perturbation theories have been developed by Man-
soori and Canfield [9] for simple liquids and by Ronis and
co-workers [10,11] for colloidal suspensions. As was shown
in Refs. [1,2,6], this procedure gives remarkably good results
for potentials where the restricted average of the potential
makes sense. In particular, this averaging is problematic for
singular potentials. Kleinert [6] later introduced a series of
systematic improvements of the method that include higher-
order corrections. In this short paper, we will suggest a
simple way of improving this first-order procedure by modi-
fying the reference potential.

The choice of x described above, without being com-
pletely arbitrary [it makes sense physically and conveniently
makes (V(x(7))) independent of time], can certainly be re-
laxed. In fact, when the Feynman-Kleinert formalism is used
to obtain density matrices, one cannot use this choice and x
simply becomes another parameter that is varied to minimize
W(x,,x,), a two-point function that is defined by

Z= f dx  dx, 8(x, — x})
X f Dx()]8(x, - x(0)) (x, — x(B))e™

:fdxadxbg(xa_xb)zp(xwxb)

dx,dx,

= J ?ﬂﬂxa —xp)e PVGa) (1.10)

N2
where p(x,,x,) is the density matrix [13]. As above, the two-
point function is bounded as

B
BW(x,.x,) = f AV, o, ~ (20 po(x,)]
0

—%IH(Z'JTB), (1.11)
where py(x,,x;) and Z are, respectively, the density matrix
and the unrestricted partition function of the reference prob-
lem and <AV(X(T))>xa,xb is a conditional average in a refer-
ence system where all trajectories start at x, and end at x,,.

The key modification introduced here is the use of the
following reference Euclidean action:

B . 2 2
Aq(ray) = j df(ﬂ G T —f(r)]Z),
. 2 2

(1.12)

where X now depends on time. In other words, for each
(x,4,xp) pair, we will minimize BW(x,,x,) with respect to
w*(x,,x,) and X(7) for all time in the interval [0, 3] which
means that the center of the reference potential will “move”
and, hopefully, better describe the true paths. This is the
unique difference between this work and what is done by
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Kleinert in Ref. [6] (there, X is a parameter that is varied, but
it is independent of time) and, as we show below, gives rise
to an interesting equation for the classical path.

Of course, our method is guaranteed to improve the
Feynman-Kleinert original first-order method. However,
since the earlier work already gave very good estimates for
BW,(x) and for the free energy, we will not be able to do
much better there. On the other hand, we expect p(x,,x;) to
be estimated more accurately using our reference potential,
especially for cases where the off-diagonal correlations are
important.

For our reference potential, the path that minimizes the
action (the classical path) satisfies

%i(7) = 0 (023 [ (7) = X(7)] (1.13)

and the reference density matrix is (for example, see Ref.

[12])

o) ADg)
21 sinh[ Bw(x,,x,)]

Z(O)po(xa’xb) = \/

where

B
AE'(I)) = J dT%{xcz(T)z + @7(x,x)[x (1) = X(D) ).
0

(1.15)

In order to make comparison with Feynman and Kleinert, we
will work with the following double-well potential:
X gxt

Vix)=——+=—+—,

1.16
2 4 4g (1.16)

where g >0. By Taylor expanding V(x(7)) around the classi-
cal trajectory x(7)=x.(7)+ dx(7), and noting that only even
powers of ([5x(7’)”])xwxh are nonzero, Eq. (1.11) can be re-
written as

B . 2 2 4
xC (T) x(,‘ g'xC
BW(x,.x,) < fo dT( —’2 - ?‘ 7 !
3gx2(1) =1 - w(x,, 3
+ 8%e(7) 2 vl xh)a(r) + Zga(T)z)

Bw(xu’xb) ), (117)

B 1 (
+-———1In|
4¢ 2 \sinh Bw(x,x;)
where it can easily be shown that

~ 5 _ sinh[w(x,,x,) 7]sinh[ w(x,,x,) (B~ 7)]
=D = ) sinhl (e, 1)B)
(1.18)

accounts for fluctuations around the classical path.

Since x(7) appears only implicitly through x,(7) in Eq.
(1.17), minimizing the bound to BW(x,,x,) with respect to
X(7) is accomplished by taking a functional derivative of Eq.
(1.17) and setting the result to zero, i.e.,
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S(BW(x,, )
W = o dT[_ xcl(T) — Xt g'xgl
ol
. 3ga<7>xc,<r>]%
-0. (1.19)

The factor &(x.(7))/ 8(x(s)) of the last equation is propor-
tional to the Green’s function that solves the classical equa-
tion of motion for x.,(7), Eq. (1.13). Hence, acting on Eq.
(1.19) with d@?/ds>— w?*(x,,x,) shows that

¥(1)==[1-3ga(Dx (D) +gx)(n,  (1.20)

with x,(0)=x, and x.(8)=x;,, minimizes BW(x,,x;). Equa-
tions (1.20) and (1.13) trivially determine X(7); namely,

[ (g ) + 1 = 3ga(n) Ire(7) = (1)

E(T) - wz(xavxb)

(1.21)

Equation (1.20) describes the motion of a particle in an
unstable potential where the harmonic force constants are
time dependent. In fact, the time-dependent term in Eq.
(1.20), 3ga(7), is nothing more than the one-loop correction
to the equation of motion, albeit with a variationally deter-
mined w’(x,,x,).

In order to implement the theory numerically we proceed
as follows. For every pair (x,,x,), the differential equation
Eq. (1.20) is solved numerically as a boundary value prob-
lem for a predetermined grid of w’s, and the resulting x,(7)
are used in Eq. (1.17) to find the frequency that gives the
smallest BW(x,,x;). This frequency is further refined with a
one-dimensional minimization routine, thereby giving the
best approximation to SW(x,,x,), which is then used to cal-
culate p(x,,xp).

If a(7) is set to zero in Eq. (1.20), it is well known that the
boundary value problem can have multiple solutions if x,
and x,, both lie between the two minima at x=++1/g. This
can also happen for nonzero a(7) when g is small and B is
large. In such cases, we use the solution that gives the small-
est BW(x,,xp).

II. RESULTS AND DISCUSSION

We now compare our results against those of Kleinert [6]
where X is not a function of time, hereafter referred to as the
“original” calculation. In Fig. 1, we compare the free energy
A=-In(Z)/ B when g=0.4 for both approximate cases against
the exact answer that we obtained by solving Schrédinger’s
equation using 170 harmonic oscillator basis functions for an
oscillator having unit frequency and centered at x=0. At the
level of the free energy, the improvement that our method
gives is small.

Next we compare the effective potential obtained in both
approaches for g=0.4 and 5=10. Note that S=10 is well into
the quantum regime. In addition, in the classical limit, i.e.,
when S is small, both methods approach the exact answer. In
Fig. 2, we compare B[W,;{(x)-A], where A is the corre-
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FIG. 1. The free energy A=—In(Z)/B in the two approximate
cases is compared with the exact answer.

sponding energy for each approach, and where BW,/A(x,)
=BWi(x,,x,) and where BW,(x,) is then used to calculate
the quantum-mechanical distribution function p(x,,x,). Also
shown is the exact effective potential and the one obtained
within the WKB semiclassical approximation.

Recall that, in the WKB approximation,

By v vy B
[ BIAP)]. 2.1)

where y/(7) is the solution of the Euler-Lagrange equation
with the full potential (the boundary condition is that the
trajectory starts and ends at x,) and f(7) is the solution of the
Jacobi equation

A1) =[-1+3gy(Df(7),

with £(0)=0 and f(0)=1.

(2.2)

. This work
L Original

6[Wefl(x) - A]

FIG. 2. B[W,(x)—~A] for g=0.4 and B=10. Only x <0 is shown
because BW,(x)=BW,(-x). In the inset, BW,{(x) is shown for
the region where our method differs most compared to the original
case.

061105-3



BENOIT PALMIERI AND DAVID RONIS

0.3C -
L N
’ .
. \
/ -~
. T AT N
. , -2
Dy NN N
L ! // \ g
0.20 . N
L , /, .
K r / // This work’
S e Original
. ./ // -— == Exact
0.1 Y VKB »
v
Y4
i
- /'
L /'
[ 2
0l =) { | 1
-2 Y] 0

FIG. 3. The quantum-mechanical distribution function p(x) for
¢=0.4 and B=10.

The distribution functions obtained with the various meth-
ods are shown in Fig. 3 where we also compare with the
“exact” results. As Figs. 2 and 3 show, our choice of refer-
ence potential improves the already good results originally
obtained, especially for x, lying between the two minima of
V(x). Also note that the error in BW,,Ax,), is largely due to
the error in the free energy (cf. Fig. 1). Moreover, at this
temperature, the WKB approximation is very inaccurate,
and, in particular, fails to describe the suppression of the
central potential barrier.

The more interesting aspect of this work is to see what
type of improvement we get for the full density matrix. After
all, it is when the initial and final points of the path are far
from each other (when the path is stretched) that we expect
our more general potential to pay off, although the distance
between the two points should not be too large, since, for
large separation, the density matrix vanishes.

In Fig. 4, we compare our method against the exact an-
swer (again, g=0.4 and B8=10). On that scale, the difference
between the two calculations is small (the original approxi-
mation is also very similar). On the other hand, there really
are some differences as can be seen from Fig. 3, which fo-
cuses on the diagonal of p(x,,x,). In Fig. 5, we plot the
difference |p—p,,qcil» Where p is calculated using our formal-
ism or the original one. This figure focuses on the region
around the off-diagonal peak and clearly shows that our po-
tential more accurately describes the off-diagonal peaks of
the density matrix, since the error is systematically lower. In
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FIG. 4. The density matrix p(x,,x;) for g=0.4 and S=10. The
figure on the left is our calculation while that on the right is the
exact answer.

particular, the small error region near (0,0) is much larger in
our case. Also, at the point (-0.9,0.9) (a point close to the
top of the off-diagonal peaks), the exact density matrix is
0.243, our calculation gives 0.244, and the original method
gives 0.233.

In Fig. 6 we show X(7) and x.(7) obtained from Egs.
(1.20) and (1.21) at the off-diagonal point (x,=0.9,
x,=—0.9). As expected, since the end points are symmetri-
cally placed around zero, Xx=0 in the original approach,
whereas here, the initial and final X(7) deviate strongly from
zero. As seen in the figure, this difference in X(7) allows us to
better describe the average paths (obtained from Monte Carlo
simulations using the full potential and a discretized path
containing 1000 points). In the same figure, we also show the
x,(7) that minimizes the Euclidean action with the full po-
tential used in the WKB approximation. As seen in Fig. 6,
there are two energetically equivalent solutions y,.(7) (they
should be included in the theory with equal weight), both of
them being quite far from the actual exact average path. The
average of these two equivalent trajectories is also shown in
Fig. 6 and turns out to be farther from the exact result than
the other two approximate methods. Figure 6 also shows that
the reference potentials used in this work or in the original
calculation replace the two equivalent solutions by one that
follows the exact average more closely than the mean of the
two WKB paths.

In the original and our calculation, the fluctuations around
the classical path are included to first order and appear in
a(7) defined by Eq. (1.18). These fluctuations will differ in
our formalism and in the Feynman-Kleinert one only through
the numerical value of w, which is independently chosen in

AN
N\ FIG. 5. The difference |p—p,.qe| for g=0.4
and B=10. The left figure is our calculation while
the right figure is the time-independent reference

potential of Kleinert.
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FIG. 6. The classical paths x.(7) defined by our reference po-
tential and the original reference potential are compared with the
exact average path linking the points (0.9,-0.9). Here, WKB(mean)
is the average of the two energetically equivalent WKB paths (see
text). In the inset, X(7) is compared for both reference potentials.

the two cases to minimize SW(x,,x,). For example, we have
®=0.495039 while, when X is independent of time, w
=0.460409 (again, with g=04, x,=0.9, x,=-0.9, and B
=10). This means that the fluctuations around the classical
path will be larger in the original method. These fluctuations
are compared in Fig. 7 against the exact result where it is
seen that both approximate methods underestimate the fluc-
tuations. Remember that the Gibbs-Bogoliubov-Jensen-
Peierls inequality (1.8) only guarantees that the two-point
function BW(x,,x;) is bounded below by the exact results
and that, consequently, our BW(x,,x,) is guaranteed to be
smaller than the one in the original calculation; nothing else
need be improved. For example, as shown in Fig. 2, even
though the two quantities SW,;(x) and BA are separately
bounded by the inequality, their combination S[W,{(x)-A]
is not.
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FIG. 7. The fluctuations around the classical paths linking x,
=0.9 and x;,=-0.9 for g=0.4 and 8=10.

In conclusion, the modification to the Feynman-Kleinert
method presented in this work improves the results by a
small, but non-negligible amount. The improvement that we
get becomes more significant when trying to capture infor-
mation about the microscopic details of the problem. In fact,
we get very little improvement in the free energy, but a better
description of the density matrix. In general, our method will
be particularly useful for potentials containing energy barri-
ers for temperatures where the off-diagonal correlations in
the density matrix are large. We also think that the equation
of motion defining X, Eq. (1.20), is, by itself, quite interest-
ing.
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